C++ Program for Splitting the Choco Bars
Dholu and Bholu are given chocolate bars which are rectangular shaped.Each chocolate is given a label A, B and C. The chocolate is to be splitted into exactly two pieces in a manner such that:
The piece that Dholu has can not contain any chocolate with name B.In the same way Bholu’s piece can not contain any chocolate labeled A. The chocolate C can be used by both of them.
All chocolates in each piece must be connected.Two chocolates are connected if they share an edge i.e. the chocolates should form one connected component.
The absolute difference that exists between the number of chocolates in pieces should not be more than K.
Now the chocolates have been divided into two pieces.Now in any piece there should not be 4 adjacent chocolates that form a square. Hence,there should not be any part of chocolate in the given pattern:
XX XX
Explanation
Input Format
The first line of the input contains 3 integers M, N and K separated by a single space.
M lines follow, each of which contains N characters. Each character is ‘T’,’D’ or ‘U’.
Constraints
0≤ M, N ≤8
0≤ K ≤ M * N
Output Format
A single line containing the number of ways to divide the chocolate bar.
Sample Input
2 2 4
CC
CC
Sample Output
12
Explanation
Note: In the explanation A and B are used to represent, which parts belong to Dholu and Bholu respectively. There are 24 = 16 possible separations. The 4 invalid are:
AA
AA
BB
BB
BA
AB
AB
BA
Some of the valid ones are:
AB
AB
AA
BB
BB
AA
BA
BA
Explanation
Note: In the explanation T and D are used to represent, which parts belong to Tom and Derpina respectively. There are 24 = 16 possible separations. The 4 invalid are:
TT
TT
DD
DD
DT
TD
TD
DT
Some of the valid ones are:
TD
TD
TT
DD
DD
TT
DT
DT
Time Limit:3.0 sec(s) for each input file.
Memory Limit:256 MB
Source Limit:1024 KB
SOURCE CODE : :
#include <iostream> #include <cstdio> #include <cstring> #include <string> #include <vector> #include <map> using namespace std; const int maxN = 8; const int maxL = (1 << 9); const int maxD = 65; const int maxC = 100; int d[2][maxL][maxD][maxC]; int n, m, k; string s[maxN]; map < vector < int >, int > M; vector < int > revM[maxC]; int unusedM[maxC]; int M_size = 0; int compress(vector < int >* a) { vector < int > used(a->size(), -1); int colors = 0; for (int i = 0; i < (n + 1); ++i) { if (a->at(i) == -1) { continue; } if (used[a->at(i)] == -1) { used[a->at(i)] = colors; ++colors; } a->at(i) = used[a->at(i)]; } if (M.count(*a) == 0) { revM[M_size] = *a; M[*a] = M_size++; } int res = a->size(); for (int i = (int)(a->size()) - 1; i >= 0; --i) { if (used[i] == -1) { res = i; } else { break; } } unusedM[M[*a]] = res; return res; } int p[maxN][maxN]; int res = 0; int used[maxN][maxN]; void dfs(int x, int y, int color) { if (x < 0 || x >= n || y < 0 || y >= m) { return ; } if (p[x][y] != color) { return ; } if (used[x][y]) { return ; } used[x][y] = true; if (p[x][y] == color) { dfs(x + 1, y, color); dfs(x - 1, y, color); dfs(x, y - 1, color); dfs(x, y + 1, color); } } void dfs2(int x, int y, int rows, int color) { if (x < 0 || x >= rows || y < 0 || y >= m) { return ; } if (p[x][y] != color) { return ; } if (used[x][y]) { return ; } used[x][y] = true; if (p[x][y] == color) { dfs2(x + 1, y, rows, color); dfs2(x - 1, y, rows, color); dfs2(x, y - 1, rows, color); dfs2(x, y + 1, rows, color); } } bool check() { int cntT = 0, cntD = 0; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { if (p[i][j] == 1) { ++cntT; } else { ++cntD; } } } if (abs(cntT - cntD) > k) { return false; } int x1 = -1, y1 = -1; int x2 = -1, y2 = -1; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { if (p[i][j] == 1) { x1 = i, y1 = j; } else { x2 = i, y2 = j; } } } memset(used, 0, sizeof(used)); dfs(x1, y1, 1); for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { if (p[i][j] == 1 && !used[i][j]) { return false; } } } memset(used, 0, sizeof(used)); dfs(x2, y2, 2); for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { if (p[i][j] == 2 && !used[i][j]) { return false; } } } return true; } bool connected[1 << maxN][1 << maxN]; void precalc() { for (int maskA = 0; maskA < (1 << m); ++maskA) { for (int maskB = 0; maskB < (1 << m); ++maskB) { int ones = 0; int twos = 0; int onesB = 0; int twosB = 0; for (int i = 0; i < m; ++i) { if ((maskA & (1 << i)) == 0) { ones = 1; } else { twos = 1; } if ((maskA & (1 << i)) == 0) { onesB = 1; } else { twosB = 1; } } bool nice = true; for (int i = 0; i < m; ++i) { if ((maskA & (1 << i)) == 0 && (maskB & (1 << i)) == 0) { nice = false; } } connected[maskA][maskB] = true; if (ones && nice && onesB) { connected[maskA][maskB] = false; } nice = true; for (int i = 0; i < m; ++i) { if ((maskA & (1 << i)) != 0 && (maskB & (1 << i)) != 0) { nice = false; } } if (ones && nice && twosB) { connected[maskA][maskB] = false; } } } } bool check(int rows) { for (int i = 0; i + 1 < rows; ++i) { for (int j = 0; j < m; ++j) { for (int x = 0; x < rows; ++x) { for (int y = 0; y < m; ++y) { used[x][y] = false; } } dfs2(i, j, rows, p[i][j]); bool dead = true; for (int k = 0; k < m; ++k) { if (used[rows - 1][k]) { dead = false; } } if (!dead) { continue; } for (int x = 0; x < rows; ++x) { for (int y = 0; y < m; ++y) { if (!used[x][y] && p[x][y] == p[i][j]) { return false; } } } } } return true; } void rec(int filled) { if (filled == n * m) { if (check()) { /*for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { if (p[i][j] == 1) { printf("1"); } else { printf(" "); } } printf("\n"); } printf("\n");*/ ++res; } return ; } int x = filled / m; int y = filled % m; if (y == 0) { if (x >= 2) { if (!check(x)) { return ; } /*int maskA = 0; int maskB = 0; for (int i = 0; i < n; ++i) { maskA = maskA * 2 + (p[x - 2][i] - 1); maskB = maskB * 2 + (p[x - 1][i] - 1); } if (!connected[maskA][maskB]) { return ; }*/ } } bool nice = false; if (s[x][y] == 'T') { p[x][y] = 1; nice = true; if (x > 0 && y > 0 && p[x - 1][y - 1] == 1 && p[x - 1][y] == 1 && p[x][y - 1] == 1) { nice = false; } if (nice) { rec(filled + 1); } } if (s[x][y] == 'D') { p[x][y] = 2; nice = true; if (x > 0 && y > 0 && p[x - 1][y - 1] == 2 && p[x - 1][y] == 2 && p[x][y - 1] == 2) { nice = false; } if (nice) { rec(filled + 1); } } if (s[x][y] == 'U') { p[x][y] = 1; nice = true; if (x > 0 && y > 0 && p[x - 1][y - 1] == 1 && p[x - 1][y] == 1 && p[x][y - 1] == 1) { nice = false; } if (nice) { rec(filled + 1); } p[x][y] = 2; nice = true; if (x > 0 && y > 0 && p[x - 1][y - 1] == 2 && p[x - 1][y] == 2 && p[x][y - 1] == 2) { nice = false; } if (nice) { rec(filled + 1); } } } void trivial() { precalc(); rec(0); cout << res << endl; } int main() { //freopen("input.txt", "r", stdin); //freopen("output.txt", "w", stdout); cin >> n >> m >> k; for (int i = 0; i < n; ++i) { cin >> s[i]; } trivial(); return 0; int u = 0, v = 1; memset(d[u], 0, sizeof(d[u])); vector < int > start(n + 1, -1); start[n] = 1; compress(&start); d[u][0][1][M[start]] = 1; d[u][(1 << n)][0][M[start]] = 1; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j, swap(u, v)) { memset(d[v], 0, sizeof(d[v])); for (int mask = 0; mask < (1 << (m + 1)); ++mask) { for (int T = 0; T <= (i + 1) * n; ++T) { for (int c_mask = 0; c_mask < M_size; ++c_mask) { if (d[u][mask][T][c_mask] == 0) { continue; } if (j == 0) { // marking Tom's cell { int color0 = (bool)(mask & 1); int comp0 = revM[c_mask][0]; int colorN = 0; int compN = -1; if (comp0 == -1) { compN = unusedM[c_mask]; } else { if (color0 == 0) { compN = comp0; } else { compN = unusedM[c_mask]; } } } // marking Derpina's cell { } } if (j != 0) { // marking Tom's cell { } // marking Derpina's cell { } } } } } } } long long res = 0; for (int mask = 0; mask < (1 << (m + 1)); ++mask) { for (int j = 0; j <= n * m; ++j) { for (int c_mask = 0; c_mask < M_size; ++c_mask) { if (abs(2 * j - (n * m)) > k) { continue; } bool nice = false; if (mask == 0 && compress(&revM[c_mask]) == 1) { nice = true; } if (mask == (1 << (m + 1)) - 1 && compress(&revM[c_mask]) == 1) { nice = true; } if (0 < mask && mask < (1 << (m + 1)) - 1 && compress(&revM[c_mask]) == 2) { nice = true; } if (nice) { res += d[u][mask][j][c_mask]; } } } } cout << res << endl; return 0; }
OUTPUT : :
2 2 4 CC CC 12