C Program for Non recursive operations in Binary Search Tree

By | 20.04.2017

Non recursive operations in Binary Search Tree


Write a C Program for Non recursive operations in Binary Search Tree. Here’s simple Program for Non Recursive operations like Search, Insert, Delete, Preorder, postorder, inorder traversal, height, min-max, display in Binary Search Tree in C Programming Language.


What is Tree ?


In linear data structure, data is organized in sequential order and in non-linear data structure, data is organized in random order. Tree is a very popular data structure used in wide range of applications.

A tree data structure can be defined as follows…

  • Tree is a non-linear data structure which organizes data in hierarchical structure and this is a recursive definition.

A tree data structure can also be defined as follows…

  • Tree data structure is a collection of data (Node) which is organized in hierarchical structure and this is a recursive definition.

Every individual element is called as Node. Node in a tree data structure, stores the actual data of that particular element and link to next element in hierarchical structure.


Below is the source code for C Program for Non Recursive operations in Binary Search Tree which is successfully compiled and run on Windows System to produce desired output as shown below :


SOURCE CODE : :


/*  C Program for Non recursive operations in Binary Search Tree  */

#include<stdio.h>
#include<stdlib.h>
#define MAX 50

struct node
{
        struct node *lchild;
        int info;
        struct node *rchild;
};

struct node *search_nrec(struct node *root, int skey);
struct node *min_nrec(struct node *root);
struct node *max_nrec(struct node *root);
struct node *insert_nrec(struct node *root, int ikey );
struct node *del_nrec(struct node *root, int dkey);
struct node *case_c(struct node *root, struct node *par,struct node *ptr);
struct node *case_b(struct node *root,struct node *par,struct node *ptr);
struct node *case_a(struct node *root, struct node *par,struct node *ptr );
struct node *del_nrec1(struct node *root, int item);
void nrec_pre(struct node *root);
void nrec_in(struct node *root);
void nrec_post(struct node *root);
void level_trav(struct node *root);
void display(struct node *ptr,int level);


struct node *queue[MAX];
int front=-1,rear=-1;
void insert_queue(struct node *item);
struct node *del_queue();
int queue_empty();

struct node *stack[MAX];
int top=-1;
void push_stack(struct node *item);
struct node *pop_stack();
int stack_empty();

int main( )
{
        struct node *root=NULL, *ptr;
        int choice,k;

        while(1)
        {
                printf("\n");
                printf("1.Search\n");
                printf("2.Insert\n");
                printf("3.Delete\n");
                printf("4.Preorder Traversal\n");
                printf("5.Inorder Traversal\n");
                printf("6.Postorder Traversal\n");
                printf("7.Level order traversal\n");
                printf("8.Find minimum and maximum\n");
                printf("9.Display\n");
                printf("10.Quit\n");
                printf("\nEnter your choice : ");
                scanf("%d",&choice);

                switch(choice)
                {

                case 1:
                        printf("\nEnter the key to be searched : ");
                        scanf("%d",&k);
                        ptr = search_nrec(root, k);
                        if(ptr==NULL)
                                printf("\nKey not present\n");
                        else
                                printf("\nKey present\n");
                        break;

                case 2:
                        printf("\nEnter the key to be inserted : ");
                        scanf("%d",&k);
                        root = insert_nrec(root, k);
                        break;

                case 3:
                        printf("\nEnter the key to be deleted : ");
                        scanf("%d",&k);
                        root = del_nrec(root, k);
                        break;

                case 4:
                        nrec_pre(root);
                        break;

                case 5:
                        nrec_in(root);
                        break;

                case 6:
                        nrec_post(root);
                        break;

                case 7:
                        level_trav(root);
                        break;

                case 8:
                        ptr = min_nrec(root);
                        if(ptr!=NULL)
                                printf("\nMinimum key is %d\n", ptr->info );
                        ptr = max_nrec(root);
                        if(ptr!=NULL)
                                printf("\nMaximum key is %d\n", ptr->info );
                        break;

        case 9:
                        printf("\n");
                        display(root,0);
                        printf("\n");
                        break;

                case 10:
                        exit(1);
                default:
                        printf("\nWrong choice\n");
                }/*End of switch*/
        }/*End of while */

        return 0;

}/*End of main( )*/

struct node *search_nrec(struct node *ptr, int skey)
{
        while(ptr!=NULL)
        {
                if(skey < ptr->info)
                        ptr = ptr->lchild; /*Move to left child*/
                else if(skey > ptr->info)
                        ptr = ptr->rchild;  /*Move to right child */
                else    /*skey found*/
                        return ptr;
        }
        return NULL;
}/*End of search_nrec()*/

struct node *insert_nrec(struct node *root, int ikey)
{
        struct node *tmp,*par,*ptr;

        ptr = root;
        par = NULL;

        while( ptr!=NULL)
        {
                par = ptr;
                if(ikey < ptr->info)
                        ptr = ptr->lchild;
                else if( ikey > ptr->info )
                        ptr = ptr->rchild;
                else
                {
                        printf("\nDuplicate key");
                        return root;
                }
        }

        tmp=(struct node *)malloc(sizeof(struct node));
        tmp->info=ikey;
        tmp->lchild=NULL;
        tmp->rchild=NULL;

        if(par==NULL)
                root=tmp;
        else if( ikey < par->info )
                par->lchild=tmp;
        else
                par->rchild=tmp;

        return root;
}/*End of insert_nrec( )*/

struct node *del_nrec1(struct node *root, int dkey)
{
        struct node *par,*ptr, *child, *succ, *parsucc;

        ptr = root;
        par = NULL;
        while( ptr!=NULL)
        {
                if( dkey == ptr->info)
                        break;
                par = ptr;
                if(dkey < ptr->info)
                        ptr = ptr->lchild;
                else
                        ptr = ptr->rchild;
        }

        if(ptr==NULL)
        {
                printf("\ndkey not present in tree");
                return root;
        }

        /*Case C: 2 children*/
        if(ptr->lchild!=NULL && ptr->rchild!=NULL)
        {
                parsucc = ptr;
                succ = ptr->rchild;
                while(succ->lchild!=NULL)
                {
                        parsucc = succ;
                        succ = succ->lchild;
                }
                ptr->info = succ->info;
                ptr = succ;
                par = parsucc;
        }

        /*Case B and Case A : 1 or no child*/
        if(ptr->lchild!=NULL) /*node to be deleted has left child */
                child=ptr->lchild;
        else                /*node to be deleted has right child */
                child=ptr->rchild;

        if(par==NULL )   /*node to be deleted is root node*/
                root=child;
        else if( ptr==par->lchild)/*node is left child of its parent*/
                par->lchild=child;
        else       /*node is right child of its parent*/
                par->rchild=child;
        free(ptr);
        return root;
}

struct node *del_nrec(struct node *root, int dkey)
{
        struct node *par,*ptr;

        ptr = root;
        par = NULL;
        while(ptr!=NULL)
        {
                if( dkey == ptr->info)
                        break;
                par = ptr;
                if(dkey < ptr->info)
                        ptr = ptr->lchild;
                else
                        ptr = ptr->rchild;
        }

        if(ptr==NULL)
                printf("dkey not present in tree\n");
        else if(ptr->lchild!=NULL && ptr->rchild!=NULL)/*2 children*/
                root = case_c(root,par,ptr);
        else if(ptr->lchild!=NULL )/*only left child*/
        root = case_b(root, par,ptr);
        else if(ptr->rchild!=NULL)/*only right child*/
        root = case_b(root, par,ptr);
        else /*no child*/
                root = case_a(root,par,ptr);

        return root;
}/*End of del_nrec( )*/

struct node *case_a(struct node *root, struct node *par,struct node *ptr )
{
        if(par==NULL) /*root node to be deleted*/
                root=NULL;
        else if(ptr==par->lchild)
                par->lchild=NULL;
        else
                par->rchild=NULL;
        free(ptr);
        return root;
}/*End of case_a( )*/

struct node *case_b(struct node *root,struct node *par,struct node *ptr)
{
        struct node *child;

        /*Initialize child*/
        if(ptr->lchild!=NULL) /*node to be deleted has left child */
                child=ptr->lchild;
        else                /*node to be deleted has right child */
                child=ptr->rchild;

        if(par==NULL )   /*node to be deleted is root node*/
                root=child;
        else if( ptr==par->lchild)   /*node is left child of its parent*/
                par->lchild=child;
        else                  /*node is right child of its parent*/
                par->rchild=child;
        free(ptr);
        return root;
}/*End of case_b( )*/

struct node *case_c(struct node *root, struct node *par,struct node *ptr)
{
        struct node *succ,*parsucc;

        /*Find inorder successor and its parent*/
        parsucc = ptr;
        succ = ptr->rchild;
        while(succ->lchild!=NULL)
        {
                parsucc = succ;
                succ = succ->lchild;
        }

        ptr->info = succ->info;

        if(succ->lchild==NULL && succ->rchild==NULL)
                root = case_a(root, parsucc,succ);
        else
                root = case_b(root, parsucc,succ);
        return root;
}/*End of case_c( )*/

struct node *min_nrec(struct node *ptr)
{
        if(ptr!=NULL)
                while(ptr->lchild!=NULL)
                        ptr=ptr->lchild;
        return ptr;
}/*End of min_nrec()*/

struct node *max_nrec(struct node *ptr)
{
        if(ptr!=NULL)
                while(ptr->rchild!=NULL)
                        ptr=ptr->rchild;
        return ptr;
}/*End of max_nrec()*/

void nrec_pre(struct node *root)
{
        struct node *ptr = root;
        if( ptr==NULL )
        {
                printf("Tree is empty\n");
                return;
        }
        push_stack(ptr);
        while( !stack_empty() )
        {
                ptr = pop_stack();
                printf("%d  ",ptr->info);
                if(ptr->rchild!=NULL)
                        push_stack(ptr->rchild);
                if(ptr->lchild!=NULL)
                        push_stack(ptr->lchild);
        }
        printf("\n");
}/*End of nrec_pre*/

void nrec_in(struct node *root)
{
        struct node *ptr=root;

        if( ptr==NULL )
        {
                printf("Tree is empty\n");
                return;
        }
        while(1)
        {
      while(ptr->lchild!=NULL )
                {
                        push_stack(ptr);
                        ptr = ptr->lchild;
                }

                while( ptr->rchild==NULL )
                {
                        printf("%d  ",ptr->info);
                        if(stack_empty())
                                return;
                        ptr = pop_stack();
                }
                printf("%d  ",ptr->info);
                ptr = ptr->rchild;
        }
        printf("\n");
}/*End of nrec_in( )*/

void nrec_post(struct node *root)
{
        struct node *ptr = root;
        struct node *q;

        if( ptr==NULL )
        {
                printf("Tree is empty\n");
                return;
        }
        q = root;
        while(1)
        {
                while(ptr->lchild!=NULL)
                {
                        push_stack(ptr);
                        ptr=ptr->lchild;
                }

                while( ptr->rchild==NULL || ptr->rchild==q )
                {
                        printf("%d  ",ptr->info);
                        q = ptr;
                        if( stack_empty() )
                                return;
                        ptr = pop_stack();
                }
                push_stack(ptr);
                ptr = ptr->rchild;
        }
        printf("\n");
}/*End of nrec_post( )*/

void level_trav(struct node *root)
{
        struct node *ptr = root;

        if( ptr==NULL )
        {
                printf("Tree is empty\n");
                return;
        }

        insert_queue(ptr);

        while( !queue_empty() ) /*Loop until queue is not empty*/
        {
                ptr=del_queue();
                printf("%d ",ptr->info);
                if(ptr->lchild!=NULL)
                        insert_queue(ptr->lchild);
                if(ptr->rchild!=NULL)
                        insert_queue(ptr->rchild);
        }
        printf("\n");
}/*End of level_trav( )*/

/*Functions for implementation of queue*/
void insert_queue(struct node *item)
{
        if(rear==MAX-1)
        {
                printf("Queue Overflow\n");
                return;
        }
        if(front==-1)  /*If queue is initially empty*/
                front=0;
        rear=rear+1;
        queue[rear]=item ;
}/*End of insert()*/

struct node *del_queue()
{
        struct node *item;
        if(front==-1 || front==rear+1)
        {
                printf("Queue Underflow\n");
                return 0;
        }
        item=queue[front];
        front=front+1;
        return item;
}/*End of del_queue()*/

int queue_empty()
{
        if(front==-1 || front==rear+1)
                return 1;
        else
                return 0;
}

/*Functions for implementation of stack*/
void push_stack(struct node *item)
{
        if(top==(MAX-1))
        {
                printf("Stack Overflow\n");
                return;
        }
        top=top+1;
        stack[top]=item;
}/*End of push_stack()*/

struct node *pop_stack()
{
        struct node *item;
        if(top==-1)
        {
                printf("Stack Underflow....\n");
                exit(1);
        }
        item=stack[top];
        top=top-1;
        return item;
}/*End of pop_stack()*/

int stack_empty()
{
        if(top==-1)
                return 1;
        else
                return 0;
} /*End of stack_empty*/

void display(struct node *ptr,int level)
{
        int i;
        if(ptr == NULL )/*Base Case*/
                return;
        else
    {
                display(ptr->rchild, level+1);
                printf("\n");
                for (i=0; i<level; i++)
                        printf("    ");
                printf("%d", ptr->info);
                display(ptr->lchild, level+1);
        }
}/*End of display()*/

OUTPUT : :


/* C Program for Non recursive operations in Binary Search Tree */

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 2

Enter the key to be inserted : 5

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 2

Enter the key to be inserted : 3

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 2

Enter the key to be inserted : 4

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 2

Enter the key to be inserted : 2

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 2

Enter the key to be inserted : 7

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 2

Enter the key to be inserted : 6

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 2

Enter the key to be inserted : 8

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 9


        8
    7
        6
5
        4
    3
        2

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 1

Enter the key to be searched : 3

Key present

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 3

Enter the key to be deleted : 7

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 9


    8
        6
5
        4
    3
        2

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 4
5  3  2  4  8  6

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 5
2  3  4  5  6  8
1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 6
2  4  3  6  8  5
1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 7
5 3 8 2 4 6

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 8

Minimum key is 2

Maximum key is 8

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 9


    8
        6
5
        4
    3
        2

1.Search
2.Insert
3.Delete
4.Preorder Traversal
5.Inorder Traversal
6.Postorder Traversal
7.Level order traversal
8.Find minimum and maximum
9.Display
10.Quit

Enter your choice : 10

Process returned 1

If you found any error or any queries related to the above program or any questions or reviews , you wanna to ask from us ,you may Contact Us through our contact Page or you can also comment below in the comment section.We will try our best to reach up to you in short interval.


Thanks for reading the post….

0 0 votes
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments