Inorder Preorder Postorder traversal
Write a C Program for Inorder Preorder Postorder traversal of Binary Tree without Recursion. Here’s simple Program for Inorder Preorder Postorder traversal of Binary Tree ( Non Recursive ) in C Programming Language.
What is Tree ?
In linear data structure, data is organized in sequential order and in non-linear data structure, data is organized in random order. Tree is a very popular data structure used in wide range of applications.
A tree data structure can be defined as follows…
- Tree is a non-linear data structure which organizes data in hierarchical structure and this is a recursive definition.
A tree data structure can also be defined as follows…
- Tree data structure is a collection of data (Node) which is organized in hierarchical structure and this is a recursive definition.
Every individual element is called as Node. Node in a tree data structure, stores the actual data of that particular element and link to next element in hierarchical structure.
Below is the source code for C Program for Inorder Preorder Postorder traversal of Binary Tree without Recursion which is successfully compiled and run on Windows System to produce desired output as shown below :
SOURCE CODE : :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
/* C Program for Inorder Preorder Postorder traversal of Binary Tree */ #include<stdio.h> #include<stdlib.h> #define MAX 50 struct node { struct node *lchild; int info; struct node *rchild; }; struct node *insert_nrec(struct node *root, int ikey ); void nrec_pre(struct node *root); void nrec_in(struct node *root); void nrec_post(struct node *root); void display(struct node *ptr,int level); struct node *queue[MAX]; int front=-1,rear=-1; void insert_queue(struct node *item); struct node *del_queue(); int queue_empty(); struct node *stack[MAX]; int top=-1; void push_stack(struct node *item); struct node *pop_stack(); int stack_empty(); int main( ) { struct node *root=NULL, *ptr; int choice,k; while(1) { printf("\n"); printf("1.Insert\n"); printf("2.Display\n"); printf("3.Preorder Traversal\n"); printf("4.Inorder Traversal\n"); printf("5.Postorder Traversal\n"); printf("6.Quit\n"); printf("\nEnter your choice : "); scanf("%d",&choice); switch(choice) { case 1: printf("\nEnter the key to be inserted : "); scanf("%d",&k); root = insert_nrec(root, k); break; case 2: printf("\n"); display(root,0); printf("\n"); break; case 3: nrec_pre(root); break; case 4: nrec_in(root); break; case 5: nrec_post(root); break; case 6: exit(1); default: printf("\nWrong choice\n"); }/*End of switch*/ }/*End of while */ return 0; }/*End of main( )*/ struct node *insert_nrec(struct node *root, int ikey) { struct node *tmp,*par,*ptr; ptr = root; par = NULL; while( ptr!=NULL) { par = ptr; if(ikey < ptr->info) ptr = ptr->lchild; else if( ikey > ptr->info ) ptr = ptr->rchild; else { printf("\nDuplicate key"); return root; } } tmp=(struct node *)malloc(sizeof(struct node)); tmp->info=ikey; tmp->lchild=NULL; tmp->rchild=NULL; if(par==NULL) root=tmp; else if( ikey < par->info ) par->lchild=tmp; else par->rchild=tmp; return root; }/*End of insert_nrec( )*/ void nrec_pre(struct node *root) { struct node *ptr = root; if( ptr==NULL ) { printf("Tree is empty\n"); return; } push_stack(ptr); while( !stack_empty() ) { ptr = pop_stack(); printf("%d ",ptr->info); if(ptr->rchild!=NULL) push_stack(ptr->rchild); if(ptr->lchild!=NULL) push_stack(ptr->lchild); } printf("\n"); }/*End of nrec_pre*/ void nrec_in(struct node *root) { struct node *ptr=root; if( ptr==NULL ) { printf("Tree is empty\n"); return; } while(1) { while(ptr->lchild!=NULL ) { push_stack(ptr); ptr = ptr->lchild; } while( ptr->rchild==NULL ) { printf("%d ",ptr->info); if(stack_empty()) return; ptr = pop_stack(); } printf("%d ",ptr->info); ptr = ptr->rchild; } printf("\n"); }/*End of nrec_in( )*/ void nrec_post(struct node *root) { struct node *ptr = root; struct node *q; if( ptr==NULL ) { printf("Tree is empty\n"); return; } q = root; while(1) { while(ptr->lchild!=NULL) { push_stack(ptr); ptr=ptr->lchild; } while( ptr->rchild==NULL || ptr->rchild==q ) { printf("%d ",ptr->info); q = ptr; if( stack_empty() ) return; ptr = pop_stack(); } push_stack(ptr); ptr = ptr->rchild; } printf("\n"); }/*End of nrec_post( )*/ /*Functions for implementation of queue*/ void insert_queue(struct node *item) { if(rear==MAX-1) { printf("Queue Overflow\n"); return; } if(front==-1) /*If queue is initially empty*/ front=0; rear=rear+1; queue[rear]=item ; }/*End of insert()*/ struct node *del_queue() { struct node *item; if(front==-1 || front==rear+1) { printf("Queue Underflow\n"); return 0; } item=queue[front]; front=front+1; return item; }/*End of del_queue()*/ int queue_empty() { if(front==-1 || front==rear+1) return 1; else return 0; } /*Functions for implementation of stack*/ void push_stack(struct node *item) { if(top==(MAX-1)) { printf("Stack Overflow\n"); return; } top=top+1; stack[top]=item; }/*End of push_stack()*/ struct node *pop_stack() { struct node *item; if(top==-1) { printf("Stack Underflow....\n"); exit(1); } item=stack[top]; top=top-1; return item; }/*End of pop_stack()*/ int stack_empty() { if(top==-1) return 1; else return 0; } /*End of stack_empty*/ void display(struct node *ptr,int level) { int i; if(ptr == NULL )/*Base Case*/ return; else { display(ptr->rchild, level+1); printf("\n"); for (i=0; i<level; i++) printf(" "); printf("%d", ptr->info); display(ptr->lchild, level+1); } }/*End of display()*/ |
OUTPUT : :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
/* C Program for Inorder Preorder Postorder traversal of Binary Tree */ 1.Insert 2.Display 3.Preorder Traversal 4.Inorder Traversal 5.Postorder Traversal 6.Quit Enter your choice : 1 Enter the key to be inserted : 7 1.Insert 2.Display 3.Preorder Traversal 4.Inorder Traversal 5.Postorder Traversal 6.Quit Enter your choice : 1 Enter the key to be inserted : 5 1.Insert 2.Display 3.Preorder Traversal 4.Inorder Traversal 5.Postorder Traversal 6.Quit Enter your choice : 1 Enter the key to be inserted : 6 1.Insert 2.Display 3.Preorder Traversal 4.Inorder Traversal 5.Postorder Traversal 6.Quit Enter your choice : 1 Enter the key to be inserted : 4 1.Insert 2.Display 3.Preorder Traversal 4.Inorder Traversal 5.Postorder Traversal 6.Quit Enter your choice : 1 Enter the key to be inserted : 9 1.Insert 2.Display 3.Preorder Traversal 4.Inorder Traversal 5.Postorder Traversal 6.Quit Enter your choice : 1 Enter the key to be inserted : 8 1.Insert 2.Display 3.Preorder Traversal 4.Inorder Traversal 5.Postorder Traversal 6.Quit Enter your choice : 1 Enter the key to be inserted : 11 1.Insert 2.Display 3.Preorder Traversal 4.Inorder Traversal 5.Postorder Traversal 6.Quit Enter your choice : 2 11 9 8 7 6 5 4 1.Insert 2.Display 3.Preorder Traversal 4.Inorder Traversal 5.Postorder Traversal 6.Quit Enter your choice : 3 7 5 4 6 9 8 11 1.Insert 2.Display 3.Preorder Traversal 4.Inorder Traversal 5.Postorder Traversal 6.Quit Enter your choice : 4 4 5 6 7 8 9 11 1.Insert 2.Display 3.Preorder Traversal 4.Inorder Traversal 5.Postorder Traversal 6.Quit Enter your choice : 5 4 6 5 8 11 9 7 1.Insert 2.Display 3.Preorder Traversal 4.Inorder Traversal 5.Postorder Traversal 6.Quit Enter your choice : 6 Process returned 1 |
If you found any error or any queries related to the above program or any questions or reviews , you wanna to ask from us ,you may Contact Us through our contact Page or you can also comment below in the comment section.We will try our best to reach up to you in short interval.
Thanks for reading the post….
I just needed this code!!! It was easy to understand. Used it as a reference to debug my code. Thank you.